
MA431: Homework 4

Required Reading

• MacCleur: sections 3.7 and 4.3.

• Gelfand & Fomin: sections 1.5, 2.10, 2.11, 4.21, 7.35, 7.36.

Due April 18th at the start of class.

1. MacCleur: 3.12/4.13. Don’t simply plug numbers into the results from class. Show the full derivation.
Call the positions of the masses (x, y) and (X,Y ), write the Lagrangian, then transform it to a polar
coordinate system.

2. MacCleur: 3.21

3. Mac Cleur: 3.25. Hint: Imagine a cylindrical coordinate system centered around the y axis, then something
rotating about the y axis with angular speed ω could be described by x(t) = R(t) cos(ωt + φ) and
z(t) = R(t) sin(ωt+ φ), where R(t) is related to y(t).

4. Gelfand & Fomin: 2.2.

5. Gelfand & Fomin: 7.1.

6. For a Lagrangian L(t, x, ẋ), we derived a special form of the Euler-Lagrange equation when L didn’t
explicitly depend on t.

(a) Show that if L(t, x, y, ẋ, ẏ) doesn’t explicitly depend on t then the EL equations imply L− ẋLẋ− ẏLẏ

is constant.

(b) If L(x, y, u, ux, uy) doesn’t explicitly depend on (x, y), then it is not necessarily true that the EL
equation implies L− uxLux − uyLuy is constant. Consider the examples L = uxuy and L = ux + uy.

7. In class we studied the Lagrangian for an elastic membrane, whose potential energy density was propor-
tional to the square of the gradient’s magnitude, i.e., dU = 1

2k‖∇u‖
2dA. Consider now a linearly elastic

beam in 1D, whose potential energy density is proportional to the square of it’s linearized curvature, i.e.,
dU = 1

2k(u′′)2dx. State an appropriate variational problem and find the Euler-Lagrange equation for a
linearly elastic beam. Assume all material parameters are constants. Also assume that u and u′ are fixed
on the boundary.

Additional Practice
MacCleur: 3.20
Gelfand & Fomin: 1.21, 7.2
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