MA431: Homework 1

Due March 14 at the start of class.

For problems marked with * you are encouraged to use software to assist you.

1. MacCleur: Problem 1.19 and read sections 1.1-1.5
2. MacCleur: Problem 2.12 and read sections 2.1, 2.4
3. MacCleur: Problems 3.4, 3.6, and read sections 3.1-3.6
4. Gelfand \& Fomin: Problem 1.15bd and read sections 1.1-1.2
5. * In class we considered the following problem

$$
J(y)=\int_{0}^{1}\left(y^{2}+\left(y^{\prime}\right)^{2}\right) d x \quad y(0)=0 \quad y(1)=5
$$

where the goal was to find $y \in \mathcal{C}^{1}$ which minimizes $J(y)$. In class we proved that the following condition was necessary for a weak minimum

$$
\int_{0}^{1}\left(h y+h^{\prime} y^{\prime}\right) d x=0
$$

for all $h \in \mathcal{C}^{1}$ with $h(0)=h(1)=0$. It's possible to show that minimizing solutions have the form $y(x)=a e^{x}+b e^{-x}$.
(a) Verify that y satisfies the necessary condition above. Hint: Integration by parts.
(b) Compute a and b.
(c) Consider $z(x)=C_{2} x^{2}+C_{1} x+C_{0}$. Choose the coefficients to satisfy the boundary conditions and minimize $J(z)$.
(d) Compare $J(z)$ to the minimum value $J(y)$. Plot y and z on the same axis. What is important about this result?

Additional Practice

MacCleur: 1.4, 1.8, 1.18, 2.1, 2.2, and 2.11. Gelfand \& Fomin: 1.14 and 1.15ace.

