MA212: Assignment #9

Required Reading:

• Sections 12.2-12.3

Any problems marked with * require the use of maple. All other problems are to be done by hand. Any problems marked with # can be submitted for review by the grader.

- 1. Textbook §12.2: 5, 9, $12^{\#}$, 17, $18^{\#}$
- 2. Textbook §12.3: 11, 12[#], 13, 20[#], 25, 28[#], 39, 40[#], 52^{*#}
- 3. Let f(x) = x on $[-\pi, 0]$
 - (a) Sketch the even periodic extension of f(x) to the interval $[-2\pi, 2\pi]$. Call this $f_e(x)$.
 - (b) Find a Fourier series expansion for $f_e(x)$ on $[-\pi, \pi]$.
 - (c) Sketch the odd periodic extension of f(x) to the interval $[-2\pi, 2\pi]$. Call this $f_o(x)$.
 - (d) Find a Fourier series expansion for $f_o(x)$ on $[-\pi, \pi]$.
- 4. $#^*$ Consider the following boundary value problem.

$$y''(x) + y(x) = x,$$
 $y'(0) = 0,$ $y'(2) = 0$

Notice that the boundary conditions match those of a Fourier cosine series on [0, 2].

- (a) Sketch the even periodic extension of x, then expand x in a Fourier cosine series.
- (b) Plug $y = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(n\pi x/2)$ into the ODE, together with your expansion from part a).
- (c) Solve for the unknown a_n . Then plot the first 10 terms in the series. Compare to the exact solution

$$y = x - 2\frac{\sin(x)}{\sin(2)}.$$