MA212: Assignment \#9

Required Reading:

- Sections 12.2-12.3

Any problems marked with * require the use of maple. All other problems are to be done by hand. Any problems marked with \# can be submitted for review by the grader.

1. Textbook $\S 12.2: 5,9,12^{\#}, 17,18^{\#}$
2. Textbook $\S 12.3: 11,12^{\#}, 13,20^{\#}, 25,28^{\#}, 39,40^{\#}, 52^{* \#}$
3. Let $f(x)=x$ on $[-\pi, 0]$
(a) Sketch the even periodic extension of $f(x)$ to the interval $[-2 \pi, 2 \pi]$. Call this $f_{e}(x)$.
(b) Find a Fourier series expansion for $f_{e}(x)$ on $[-\pi, \pi]$.
(c) Sketch the odd periodic extension of $f(x)$ to the interval $[-2 \pi, 2 \pi]$. Call this $f_{o}(x)$.
(d) Find a Fourier series expansion for $f_{o}(x)$ on $[-\pi, \pi]$.
4. \#* Consider the following boundary value problem.

$$
y^{\prime \prime}(x)+y(x)=x, \quad y^{\prime}(0)=0, \quad y^{\prime}(2)=0
$$

Notice that the boundary conditions match those of a Fourier cosine series on $[0,2]$.
(a) Sketch the even periodic extension of x, then expand x in a Fourier cosine series.
(b) Plug $y=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x / 2)$ into the ODE, together with your expansion from part a).
(c) Solve for the unknown a_{n}. Then plot the first 10 terms in the series. Compare to the exact solution

$$
y=x-2 \frac{\sin (x)}{\sin (2)}
$$

