MA212: Assignment \# 4

Required Reading:

- Sections 2.7 and 10.1

Any problems marked with * require the use of maple. All other problems are to be done by hand. Any problems marked with \# can be submitted for review by the grader.

1. Textbook $\S 2.7: 13,18 \mathrm{~b}^{\#}, 21,26^{\#}, 34^{\#}, 39 \mathrm{ac}, 49$
2. Textbook $\S 10.1: 3,11,12^{\#}, 14^{\#}, 15,17,18^{\#}, 21$
3. Textbook $\S 10.1: 26^{\#}$. To prove that a given function is the general solution of an inhomogeneous second order linear system of ODE, the following steps are required
(a) Write the proposed solution in the form $X(t)=c_{1} X_{1}(t)+c_{2} X_{2}(t)+X_{p}(t)$ and identify X_{1}, X_{2}, and X_{p}.
(b) Show separately that X_{1} and X_{2} are each solutions of the homogeneous system, and use the definition of a fundamental set to prove that having two solutions is sufficient.
(c) Show that X_{1} and X_{2} are linearly independent, and use theorem 10.1.5 to prove that they form the general solution of the homogeneous system. This is known as the complementary solution, X_{c}.
(d) Show that X_{p} a solution to the inhomogeneous system. This is called a particular solution.
(e) Use theorem 10.1.6 to prove that $X=X_{c}+X_{p}$ is the general solution of the inhomogeneous system.
4. One simple model for the growth of a tumor assumes that the growth of new tumor cells proceeds at a rate proportional to their surface area, while the death of existing tumor cells proceeds at a rate proportional to the volume. Define the number of tumor cells to be $N(t)$. We know that if the tumor has a simple shape, then volume is proportional to N. The initial number of tumor cells is N_{0}.
(a) For both a sphere and a cube, show that surface area=constant*volume ${ }^{n}$. Based on these two examples, make a conjecture regarding how tumor surface area relates to N.
(b) Write a differential equation initial value problem for $N(t)$. Your equation will have unknown proportionality constants in it.
(c) We know that volume has units of length ${ }^{3}$. This suggests we introduce a new variable, $N(t)=x(t)^{3}$. By plugging this into your ODE from part b), show that $x(t)$ solves a linear ODE.

$$
x^{\prime}+a x=b
$$

where (a, b) are positive constants.
(d) Solve the ODE in part c), then find an expression for $N(t)$ and fit the initial data. What happens to the tumor volume in the long term, $t \rightarrow \infty$?

