MA211: Assignment \# 9

Required Reading.

- Sections 4.5 and 6.1.

Any problems marked with * require the use of maple. All other problems are to be done by hand. Any problems marked with \# can be submitted for review by the grader.

1. Textbook $\S 4.5: 2^{\#}, 3,12^{\#}, 15$
2. Textbook $\S 6.1: 2^{* \#}, 3^{*}, 9^{*}, 11^{*}, 12^{*} \#, 13 \mathrm{ad}, 14^{\#}$. Hint for 11 : When trying to find the analytical solution, note that this ODE is neither linear nor separable. Substitute $z=x+y-1$ into the ODE and you'll find a simpler ODE for z. Hint for 12: Part a) is asking you to use a high precision numerical solver, e.g, Maple's rkf45. Part b) is asking you to compare your answers to what you found in part a).
3. Consider the following initial value problem.

$$
y^{\prime}(x)=\frac{y(x)}{(x-1)^{2}}, \quad y(0)=1
$$

Use two steps of Euler's method to estimate $y(3 / 2)$. The estimate you found is not only inaccurate, but mathematically meaningless. Why?
4. ${ }^{*}$ \# Consider the following numerical method for solving $y^{\prime}=f(x, y)$.

$$
\begin{aligned}
& k=h * f\left(x_{n}+h / 2, y_{n}+k / 2\right) \\
& y_{n+1}=y_{n}+k
\end{aligned}
$$

Notice that computing k usually requires you to solve a nonlinear algebra problem, making this method challenging to use.
(a) Suppose $f(x, y)=x-y$. Show that it's simple to solve for k in this case.

$$
\begin{aligned}
& k=\frac{h\left(x_{n}-y_{n}+h / 2\right)}{1+h / 2} \\
& y_{n+1}=y_{n}+k
\end{aligned}
$$

(b) Use this method to approximate $y(1)$ where $y^{\prime}=x-y$ and $y(0)=0$. Do so using 10,100 , and 1000 steps. Do you see any benefit to using this more difficult method compared to Euler's method?

