MA211: Assignment # 5

Required Reading.

• Sections 3.4 & 3.8.

Any problems marked with * require the use of maple. All other problems are to be done by hand. Any problems marked with # can be submitted for review by the grader.

- 1. Textbook §3.4: $16^{\#}$, $30^{\#}$, 35, 38
- 2. Textbook §3.8: 2, 6, 11^{*}, 23, 27[#], 37[#], 43^{*}, 47ab, 48ab, 49[#], 57[#] (hint for 48: $\sin^2(\theta) = (1 \cos(2\theta))/2$ and $\sin^3(\theta) = (3\sin(\theta) \sin(3\theta))/4$.)
- 3. * Suppose a non-Hookean spring resists displacement with a non-constant spring coefficient. That is, the spring coefficient is not constant, but is larger the further away the spring is from equilibrium. So, replace the spring constant by ax^2 .
 - (a) If a mass is attached to this spring and both gravity and resistance are ignored, show that Newton's second law leads to

$$mx''(t) = -ax^3$$

- (b) Set a/m = 1. Suppose that the spring is initially displaced by d units and is motionless. Use Maple to solve the initial value problem.
- (c) Let the initial displacement be d = 1. Plot your solution for the first 5 periods. Using this plot (and possibly fsolve), show that the period is approximately P = 7.416.
- (d) Repeat this process and complete the following table. Give your answers to three decimal places.

d	1	2	3	4	5
Р	7.416				

(e) Use Maple's *pointplot* to plot the period versus d. If this were a Hookean spring, how would this plot be different? Explain why the results for this non-Hookean spring make sense physically.