MA211: Assignment \# 3

Required Reading.

- §17.1-17.2
- §3.1.1-3.1.3

Quiz on Sept. 26th. Any problems marked with * require the use of maple. All other problems are to be done by hand. Any problems marked with \# can be submitted for review by the grader.

1. Textbook: $\S 17.1: 16,20^{\#}, 26^{\#}, 39^{\#}$
2. Textbook: $\S 17.2: 12,15,24^{\#}, 33^{\#}, 35$ (In problems 21-36 you must use Euler's formula and the methods shown in class. Do not use the textbook's formulae or other methods.)
3. Textbook: $\S 3.1: 4^{\#}, 14,20^{\#}, 22^{\#}, 25,26^{\#}, 28^{\#}$
4. Find the roots of $z^{4}+3 i z=0$ using the methods shown in class.
5. ${ }^{* \#}$ Consider the linear differential equation $y^{\prime \prime}(x)-x y(x)=0$, which arises in quantum mechanics.
(a) Use Maple's dsolve to compute the general solution. The special functions you see are known as Airy functions. Plot the two Airy functions on the same axis with the domain $x \in[-20,10]$ and range $y \in[-1,2]$.
(b) Compute the 2×2 Wronskian, using Maple to help you compute derivatives of the Airy functions. Because the Wronskian you found doesn't simplify to something you can easily understand, make a good plot of it to show that the two Airy functions are probably linearly independent.
