MA211: Assignment # 3

Required Reading.

- §17.1-17.2
- §3.1.1-3.1.3

Quiz on Sept. 26th. Any problems marked with * require the use of maple. All other problems are to be done by hand. Any problems marked with # can be submitted for review by the grader.

- 1. Textbook: §17.1: 16, $20^{\#}$, $26^{\#}$, $39^{\#}$
- 2. Textbook: §17.2: 12, 15, 24[#], 33[#], 35 (In problems 21-36 you must use Euler's formula and the methods shown in class. Do not use the textbook's formulae or other methods.)
- 3. Textbook: §3.1: $4^{\#}$, 14, $20^{\#}$, $22^{\#}$, 25, $26^{\#}$, $28^{\#}$
- 4. Find the roots of $z^4 + 3iz = 0$ using the methods shown in class.
- 5. *#Consider the linear differential equation y''(x) xy(x) = 0, which arises in quantum mechanics.
 - (a) Use Maple's dsolve to compute the general solution. The special functions you see are known as Airy functions. Plot the two Airy functions on the same axis with the domain $x \in [-20, 10]$ and range $y \in [-1, 2]$.
 - (b) Compute the 2×2 Wronskian, using Maple to help you compute derivatives of the Airy functions. Because the Wronskian you found doesn't simplify to something you can easily understand, make a *good* plot of it to show that the two Airy functions are probably linearly independent.