MA211: Assignment \#2

Required Reading.

- §2.2, 2.3

Exam on Sept. 19th. Any problems marked with * require the use of maple. All other problems are to be done by hand. Any problems marked with \# can be submitted for review by the grader.

1. Textbook $\S 2.26^{\#}, 7,8^{\#}, 17,30^{\#}, 39^{*}, 40^{*}$ Note for $39 \& 40$: Find solutions by hand, plot with Maple.
2. Textbook $\S 2.35,6,14^{\#}, 18,22^{\#}, 25,26,52^{\#}$
3. If an incompressible fluid is flowing steadily, then, at a particular point in the flow, there is a density ρ, a velocity v, and a pressure P. Also, if gravity is considered, then the height h at the point we've chosen is relevant. Bernoulli's principle states that, even as (ρ, v, P, h) change as we move along a streamline to another point in the fluid, the following combination of these variables will remain constant: $P+\rho g h+\frac{1}{2} \rho v^{2}$, where g is the acceleration of gravity, $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Consider a cylindrical bucket with a hole in it. Start at the top of the water level: $P=$ atmospheric, $v=0$, $h=y$ and then follow a stream line of water down to the hole: $P=$ atmospheric, and $h=0$.
(a) Use Bernoulli's principle to show that the velocity of fluid exiting the hole is $v=-\sqrt{2 g y}$.
(b) Now suppose the bucket has cross-sectional area A_{b} and the hole has area A_{h}. The rate at which the water line lowers is $d y / d t$. Find the positive constant k, depending on A_{b}, A_{h}, and g, so that $d y / d t=-k \sqrt{y}$.
(c) Suppose the bucket is empty at time $t=1$, i.e., $y(1)=0$. Solve the initial value problem. Does your solution make sense for $t>1$ and $t<1$? Give a physical interpretation to support your answer.
(d) Notice that $y(t)=0$ is another solution to your intitial value problem, one that isn't a member of the one parameter family you found in part (c). Call the solution you found $f(t)$. Show that the following function also solves the initial value problem.

$$
y(t)= \begin{cases}f(t) & t<1 \\ 0 & t \geq 1\end{cases}
$$

Recall that for a function to solve a DE it has to have certain properties, which must be checked carefully. Does this solution make sense for $t>1$ and $t<1$? Give a physical interpretation to support your answer.

