MA211: Assignment \#1

Required Reading.

- §1.1-1.3, and 2.1.

Quiz on Sept. 12th. Any problems marked with * require the use of maple. All other problems are to be done by hand. Any problems marked with \# can be submitted for review by the grader.

1. Textbook §1.1: $2,3,12,16^{\#}, 17,19^{*}, 22,30^{\#}, 43$
2. Textbook §1.2: $3^{\#}, 9,29 \mathrm{c}$
3. Textbook $\S 1.3: 6,7,8^{\#}, 9^{\#}, 18,27$
4. Textbook §2.1: $1^{*}, 8^{* \#}, 21^{\#}, 28,42 a b$
5. Molecules of two types are reacting. First, molecule A is transformed into molecule B. Then, A and B combine to form two molecules of A.

$$
\begin{aligned}
& A \rightleftharpoons B \\
& A+B \rightleftharpoons 2 A
\end{aligned}
$$

Let $x(t)$ be the concentration of molecule A and $y(t)$ be the concentration of molecule B.
(a) Explain why the correct ODE model for this reaction system is of the form

$$
\begin{aligned}
x^{\prime} & =-k_{1}^{+} x+k_{1}^{-} y+(?) k_{2}^{+} x y+(?) k_{2}^{-} x^{2} \\
y^{\prime} & =k_{1}^{+} x-k_{1}^{-} y+(?) k_{2}^{+} x y+(?) k_{2}^{-} x^{2} .
\end{aligned}
$$

What integers should you replace the (?)'s with?
(b) As we did in class, show that there is a conservation law. Prove it mathematically, but also explain why it makes sense from a chemistry point of view. Hint: as in class, it's easiest to deduce the conservation law by thinking about the chemistry.
(c) Use this conservation law to write an ODE for $x(t)$ only. It should not have $y(t)$ in it.

