MA113: Assignment \# 7

Any problems marked with * require the use of maple. All others are to be completed by hand.

Required Reading

- Textbook, sections 14.7-14.9.

To be completed, but not turned in.

- Textbook, $\S 14.8$, \# 1, 5, 9, 16, 27, 31b, 39, 43, 49*
- Textbook, §14.9, \# 1, 7, 11

To be turned in May 1st at the start of class.

1. Repeat the blood vessel problem from class, but now assume that the branch has a variable radius, that is, r_{2} is variable. Assume that the volume of the cylindrical branch is a fixed constant, that is, $\pi r_{2}^{2} L_{2}=V$ where V is a fixed constant. When the optimization problem is solved correctly, you will find a single equation which determines the value of θ. That equation will take the form

$$
\cos \theta \csc ^{2} \theta=\text { constant }
$$

You do not need to solve the equation, you only need to do the work required to state the equation correctly.
2. * Use the Lagrange multiplier method to find the shortest line segment connecting $y=x^{2} / 2$ to $y=\ln x$. Compute an equation for the line and compute the minimum distance. Confirm your solution by making a plot of both curves and the line segment on the same set of axes. Note: you can probably think of other ways (without Lagrange Multipliers) to solve this problem. You are encouraged to try one of those methods to check you answers.
3. *Suppose you've collected the data points $\{(0,0,0),(1,0,0),(0,1,0),(2,0,-7)\}$ and wish to find a plane of the form $a x+b y+c z=1$ which approximates this data.
(a) Compute the distance from $(0,0,0)$ to the plane. Call this D_{1}. Repeat to find D_{2}, D_{3}, and D_{4}.
(b) Define the function $F(a, b, c)=D_{1}^{2}+\ldots+D_{4}^{2}$. Compute the minimum value of F.
(c) Plot the points and the optimal plane on the same set of axes.
4. Last week you were given some information about a function, $f(x, y)$, and its derivatives at the point $(\pi / 2,0)$ and were asked to use a tangent plane approximation to estimate $f(\pi / 3, \pi / 12)$. Now that you've learned about Taylor polynomials, return to that problem and use the given information to get a (hopefully) better estimate of $f(\pi / 3, \pi / 12)$.

