MA113: Assignment \# 2

Not to be turned in.

1. Textbook $\S 12.3 \# 3,7,11,13,19$.
2. Textbook $\S 12.4 \# 7,11,23,25,27$.
3. Textbook $\S 12.5 \# 3,7,9,19,21,23,27,37,77$

To be turned in March 20th at the start of class.

1. Define the following three functions.

$$
x(s, t)=s+t+1, \quad y(s, t)=s-t, \quad z(s, t)=2 s-t
$$

As s and t vary over all real values, the point (x, y, z) traces out a plane. Find the equation of this plane in standard form.
2. A right handed coordinate system is a set of three unit vectors (the coordinate axes directions), call them $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ with the property

$$
\mathbf{a} \times \mathbf{b}=\mathbf{c}, \quad \mathbf{b} \times \mathbf{c}=\mathbf{a}, \quad \mathbf{c} \times \mathbf{a}=\mathbf{b}
$$

Do the vectors $\{\langle 0,0,-1\rangle,\langle 1 / \sqrt{2}, 1 / \sqrt{2}, 0\rangle,\langle 1 / \sqrt{2},-1 / \sqrt{2}, 0\rangle\}$ form a right handed coordinate system? If so, sketch the axes of this coordinate system.
3. The projection you learned about in class is used to project a vector onto a single vector. In some applications, it is desirable to project a vector onto a plane. Recall the derivation of the projection formula in class. Instead of projecting u onto v by expressing it as $u=k v+w$, with v orthogonal to w and k a scalar, we'll project u onto the plane formed by two vectors v_{1} and v_{2}.
(a) Let $u=k_{1} v_{1}+k_{2} v_{2}+w$, where v_{i} are orthogonal to w and k_{i} are scalars. Use dot products to eliminate w in two different ways, obtaining two equations for the unknown scalars, k_{i}.
(b) Use the result of part a) to project $\langle 1,2,3\rangle$ into the $y z$-plane. Make a sketch and use geometric reasoning to confirm that your solution is correct.
4. The line $\mathbf{r}(t)=\langle t, 2 t, 1-t\rangle$ intersects the plane $z=x+2 y$. Show that the line is normal to the plane and compute the point of intersection.

