# Lagrange Multipliers: Optimal Growth of Blood Vessels 

## Goulet

April 25, 2018

The sketch below shows a small blood vessel of radius $r_{2}$ branching from a larger one of radius $r_{1}$. As the heart pumps blood, the resistance encountered is proportional to $1 / r^{4}$, where $r$ is the radius of a blood vessel. For efficiency, blood should be moved from the point $(0,0)$ to the point $(c, b)$ with minimal resistance. We'll ignore the fluid resistance which occurs when blood transfers from the larger vessel to the smaller one.

$$
\begin{aligned}
& R=a\left(\frac{L_{1}}{r_{1}^{4}}+\frac{L_{2}}{r_{2}^{4}}\right) \\
& c=L_{1}+L_{2} \cos \theta \\
& b=L_{2} \sin \theta
\end{aligned}
$$

(Total Hydraulic Resistance)
(fixed x location of the end of the branch) (fixed $y$ location of the end of the branch)
$\left(a, b, c, r_{1}, r_{2}\right)$ are known fixed constants. $\left(L_{1}, L_{2}, \theta\right)$ are variables. Use Lagrange multipliers to determine $\left(L_{1}, L_{2}, \theta\right)$ which minimize the resistance. Show and explain your work.


