MA113: Velocity and Acceleration

1. A man with a mass of 70 kilograms is running in the clockwise direction around a circular track whose equation is $x^{2}+y^{2}=25$. When he gets to the point $(3,4)$, he is running $5 \mathrm{~m} / \mathrm{s}$ and he is speeding up at the rate of $10 \mathrm{~m} / \mathrm{s}^{2}$. What is his acceleration vector at that moment?
2. In the xy-plane where distances are measured in meters, a 40 kg object is moving from left to right on $y=e^{-x}$. At $x=0$ its speed is $2 \mathrm{~m} / \mathrm{s}$, and it is speeding up at the rate of $\sqrt{8} \mathrm{~m} / \mathrm{s}^{2}$. What is the total force on it at that point? What is the magnitude and angle of inclination of this force?
3. An object is traveling, in an xy-plane where distances are measured in centimeters, counterclockwise around the ellipse $C: x=6 \cos (\theta), y=8 \sin (\theta)$. When it is at $(-6,0)$, its acceleration vector is $6 i+4 j \mathrm{~cm} / \mathrm{s}^{2}$. What is its speed and at what rate is it speeding up or slowing down at that point?
4. A 10-kilogram ball is moving, in the direction of increasing α, on the spiral $x=\alpha \cos (\alpha), y=$ $\alpha \sin (\alpha)$. When it is at the origin, it is traveling $3 \mathrm{~m} / \mathrm{s}$ and is speeding up at the rate of $7 \mathrm{~m} / \mathrm{s}^{2}$. What is the total force on it at that point?
5. At a point P in an xy-plane where distances are measured in meters, the unit tangent vector to an object's path is $\frac{-\hat{i}+5 \hat{j}}{\sqrt{26}}$, the curvature of its path has a value of $\frac{1}{6}$, and its acceleration vector is $(\hat{i}+\hat{j}) \sqrt{26}$. What is its speed and at what rate is it speeding up or slowing down at P ?
6. An object is traveling in the counterclockwise direction around the ellipse $4 x^{2}+9 y^{2}=36$. When it reaches the point $x=0, y=-2$ meters, its acceleration vector is $3 i+5 j \mathrm{~m} / \mathrm{s}^{2}$. What is its speed and at what rate is it speeding up or slowing down at that time?
7. The total force on an object with mass 8 kg and having a velocity vector $4 \hat{j} \mathrm{~m} / \mathrm{s}$ is $\hat{i}-3 \hat{j}$ Newtons. Find the curvature of its path at that moment.
8. A coin with mass $\rho \mathrm{kg}$ will not slide off a spinning turntable provided the force on it is no greater than $\frac{\rho g}{9} \mathrm{~N}$. How far from the center of a turntable spinning at 45 revolutions per minute can a coin be without sliding off?
9. What is the maximum magnitude of the force required to cause an object weighing 1 kg to move at the constant speed of $1 \mathrm{~m} / \mathrm{s}$ along the parabola $y=x^{2}$?
10. A particle moves along the parabola $y=x^{2}$ in such a way that the horizontal component of its velocity is always $1 \mathrm{~m} / \mathrm{s}$. At the point $(1,1)$, find the tangential and normal components of the acceleration vector.
